Archean kerogen as a new tracer of atmospheric evolution: Implications for dating the widespread nature of early life

نویسندگان

  • David V Bekaert
  • Michael W Broadley
  • Frédéric Delarue
  • Guillaume Avice
  • Francois Robert
  • Bernard Marty
چکیده

Understanding the composition of the Archean atmosphere is vital for unraveling the origin of volatiles and the environmental conditions that led to the development of life. The isotopic composition of xenon in the Archean atmosphere has evolved through time by mass-dependent fractionation from a precursor comprising cometary and solar/chondritic contributions (referred to as U-Xe). Evaluating the composition of the Archean atmosphere is challenging because limited amounts of atmospheric gas are trapped within minerals during their formation. We show that organic matter, known to be efficient at preserving large quantities of noble gases, can be used as a new archive of atmospheric noble gases. Xe isotopes in a kerogen isolated from the 3.0-billion-year-old Farrel Quartzite (Pilbara Craton, Western Australia) are mass fractionated by 9.8 ± 2.1 per mil (‰) (2σ) per atomic mass unit, in line with a progressive evolution toward modern atmospheric values. Archean atmospheric Xe signatures in kerogens open a new avenue for following the evolution of atmospheric composition through time. The degree of mass fractionation of Xe isotopes relative to the modern atmosphere can provide a time stamp for dating Archean kerogens and therefore narrowing the time window for the diversification of early life during the Archean eon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dating divergence of Polystigma and other Sordariomycetes

Studies on the evolutionary history of ascomycetes in terms of time scale will help to understand historical patterns that shape their biodiversity. Until now most of dating studies of ascomycetes have focused on major events in fungal evolution but not on divergence events within smaller groups of fungi e.g. within Sordariomycetes. We used molecular dating to estimate the time of separation of...

متن کامل

Exploring the Contributions of Liquid - Phase Sulfur Chemistry to the Mass - Independent Sulfur Fractionation of the Archean Rock Record by MASSACH OFT Sebastian Hermann Kopf

Archean sulfur mass-independent fractionation (S-MIF) has been widely recognized as one of the strongest indicators for the rise of atmospheric oxygen in the Early Proterozoic. A decade after its discovery, the wide-ranging implications of Archean sulfur MIF have been discussed extensively and despite a number of recent studies on the gas-phase chemistry of sulfur, no definite overall picture h...

متن کامل

The Raman-Derived Carbonization Continuum: A Tool to Select the Best Preserved Molecular Structures in Archean Kerogens

UNLABELLED The search for indisputable traces of life in Archean cherts is of prime importance. However, their great age and metamorphic history pose constraints on the study of molecular biomarkers. We propose a quantitative criterion to document the thermal maturity of organic matter in rocks in general, and Archean rocks in particular. This is definitively required to select the best candida...

متن کامل

Optical dating of Holocene lake bed sediments of the Nimbluk Plain, Khorasan, Northeast Iran: Implications for the climate change and palaeo-environment

We have investigated an optically stimulated luminescence (OSL) dating study in the Nimbluk lakebed in Khorasan, northeast Iran. Two samples of the lake-bed sediments from ~1 m below the land surface are successfully dated at 7.3-9.9 ka. All necessary experiments have been performed to choose the most suitable procedure for dating quartz extracts using single aliquot regeneration method (SAR). ...

متن کامل

Implications of present-day abiogenic methane fluxes for the early Archean atmosphere

[1] During Earth’s early history, greenhouse warming by atmospheric methane helped to maintain elevated surface temperatures. Here, we estimate the present-day abiogenic CH4 flux generated by mineral alteration (serpentinization) at midocean ridges, volcanic emissions, and geothermal sources; in addition, we assess the impact that abiogenicmethanemay have had on greenhouse warming during the ea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2018